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ENT OF THE EGQUAT 10HS OF MoTICH

The equation of
of=freedom osc i?Iafé

scously damped, one=degre
-EXPressed as: g

I ‘no éz%ernal forcing

i‘ﬂ

7&7-

fa? s the form of a free
c

§c17iation "earese**eu:g - the homogerous equation:

In ‘the above express iés:«

?f,the
"fthe

SS

<s56rc1n5 fs%ﬁ“%;
seneralized coornr

e,*q’gne pressire
al"a /s uzpasfﬁg

asc 1339103 wcs
such ssvillativ“
::his trim :23'351
between the “itcs
support in respeon e &
Pigure 2).

—/1tr io cﬁg?ﬁ-sf-nt ac
r ntative <l a bzlarnce
,152 gsmeqt generater by the
=r displacement {see

s

The instantaneo the model zbout the trin

angle, a,, is repr

‘i‘

[
o
A

For this trim angle case =ion {
the interaction of th & z=Ting

oy
o
L™z
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Yhere Iy, d; V¥, ¥ and iy are the moment of inertia, dynamic

pwessure, air speed, amplitude of time-dependent applied moment
and trim moment requirel to maintain the trim angle. Consider

‘the condition of o<1, Under this assumption, we can expand

the damping derivative, Cmg, and the pltchipé moment term, Cp,

7=n é sev*es acou the trim angle, ars

%[CM\“ ac.,.,\

"Q dd
_‘; J o . - ; ::
- s L K

=@3dLC, ] = M,
“ M@) = Mo/qed

oF

which is repres
generated mom
is an even

st vani én;
equation (5

Isd% -

7 iﬁ; the above-mentioned con31derations,

e \it . dd OF 3 _M3ds" 2V
11!,"‘"'0 -Sm%t

(6)

(4) for the case of steady state oscillation:

tive of the pitch moment, support displacement
viously ment‘oned. As the damping moment

1 6f a, its odd derivatives must vanish. The
n oaa function of a, thus its even derivatives

tc be more concise, the eguation (8) may be written

2:':"[ wic n,aﬂ [Q“c -\
Md

M- . -
’i':i:“ T 4= Psmw‘t

11

(9)

! Wi
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The damping term,M.‘ ,» contains both aerodynamic and structural-
mecharical damping and the stiffness **erm,M‘ , contains both
aerodynamic and mechanical stiffness:

et bt s ! s o AR

The nomogeneous iovm of equatior. (9) may be 3o0lved using ’
the Laplaceé transform® is: -3
L=
with initial corditi
etl = Ay i
t=0 = _ = '
= Equation (9) then becomes: :
= 9= Mo o
5% ~5( 3-( (11)
= o~ pearranging yie€lds o 7 '
= (12) 5

Taking the inve

X = (13)
where

= (14) ,
= ia. 2 A8 :
= { MY N2 . S g
= when(’%-§= -‘l(‘f) the critically damped case occurs (all
5; oscillatory motion ceases); whenﬁai.-bthe motion is undamped and
3 the motion oscillates at a freguency Oflﬁlll" . These two
§ erztremes of critically damped and undamped motion may be }
represented by the following parameters:
Z ~M/Z__ (15)
Z(M/r)" |
6!t!izon, F. E., Handbook of Laplace Transforms, Prentice-Hal., Inc.; - %
Englewood Cliffs, lew Jersey, 1960 H

Wm

v A S0 A DA

itk Pl
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R A

Wy
i

The damping ratio represents the amount of damping present
- as a decimal fraction of the amount required for critical

damping, - -
. W, = ’~’4¢
Wq /T (16)

is the undamped natural f{reguency.

I

Thus. equatiens (23) and (14) may be rewritten:

-; - SN(F?_‘{—"’W (17)

A A b
L]

(18)

’Lquations (10) and (31) can also be used to rewrite equation (9) as:

* 2 { w,d + u),\ < = Psm (,(p#\ (19)

r il?). The amplitude of the 1th oscillation

q;*; L;- - ,~,
-7 (20)
and the zmplitude of the (i+l Jth ouneillation can be written as:

62-';1Uh(£4%‘1‘)

D o O T e T R

e (21)
H where T is the pericd of oscillation.
= The logarithm of the ratio of the succeeding amplitudes is:

- §=In[#/zs]- In[eT% 7] 10,T= 3%2)—" (22)

Yl
W
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where the uanped 1“eqa ney 1suu From equation (17) we obcain
for the damped natura “Pequency, "‘ W, (V- ). Thus the
expression for uht‘.‘ ;eé—dEﬂre.uem,J s becomes:

(F<<1) (23)
or

(§<<t)

(24)

Thus the ratio of the logarithm of succeeding amplitudes, § , mey
be related ‘.c the dam g:ins auio,; . In a free-oscillation tect

the logarithm of the ratio of the initizl amp lituae,c( s to the nth
amplitude,. d— , follows from the definition of the log-—aecrenent
as:

— (25)
: The number of litude for
a model having io,; s is
H given &s:
. (26)
= and the number of cycles to damp to V@ times the initial amplitude,
-4 is:
vl Vo * *
-4 e Ne = Y¢ = 4519
- v = 1§ = "=
; (27)
x - v ) 5=
other expressions of value are the time to damp tc half amplitude, %
“Tus » 2nd the time to damp to V€ of the initial amplitude or g
relaxation time, Tye, i.e., the time vo damp to V[€ times

e’ "
the initial amplitude,

LT AT T P Al

T Wn (28)

(29)

The equation of motion for a small amplitude free-oscillation
system is given by eguation (9) wher the forcing function vanishes.

NG R B A AGR

14




(30)

ree oscillation technique the model is mounted on a fiexure,
€ account wust bé taken of the elastic stiffness in the
rm and the flexural damping in the gn‘ term.

In order to understand the flexural dampint contribu*ion,
an explanation of the councept of structural damping?® is in
ozcer.fr-he eqaation of moticn could be rewritten in the
generalized form as:

Ky +270, KO+ WA XY 2wl ) = Wi A e

swt
(31)

tate response of th system to the harmonic excitation

=Hw Ae (32)

vhere H(w) is the complex freguency reSponse; Ve can wuwrite,
however,

1= (@R 278 - T (o) T

(34)

tion (32) can therefore be rewritten as:

Y = A\Hum\ el Wwt-9) (35)

h indicates that omplex vector describing the response
ags behind the d : yector describing the excitation

S

L

he phase angls @.

by
A

X =iwA Hw|e @ = jwxik) (36)

1= Cos W2 4i sz = ™2 (37)

Equations {36} and (37) indicate that the velocity vector is
90° zhsad of the displacement vector and W times as large.
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The terms with the bar

stiffness contribution
the zerodynamic contriba

o2 - -5 o -~ - +
Since we wznt the z one we must evzluszte
: _ A
the mechaniczl terzms by o oscllilate in a
~ & . 3L =2 ~
vacuum or favre condition, cated by the
. rors e
subscrint o. The total 4 then be
3 4 -2 =
determined using eguation s

or,
CM S

wnere A and N‘
tunnel on and Ae H obt:
condition, The above could z=iso be expressed In
decrement, & , 2as:

- LVW
Q.,H- ﬁ[&‘ U.ih. J (56)
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or changing the variable of intngration

ISa 24t + M, S?c‘&.-l-M‘S * L:N\S"auhtaét (62)

The steady state solution of eguation (9) is given dy making
use of Laplace transforms, equation (9) becomes:

S’ - s, + 2 $w, (SR-L)+ Wi =

W, .c[§-+ S+I] =25, [z,

(63)

(64)

Now. Solving for e we get:

(65)

Since the inverse transiorm ope‘atioﬁgtlisgl*s 1inear, we can
regard the inverse transforms separately: The first term on

the right is the transient solution with the inverse of this
term already obtalned in egquation (17). As has béen pointed out,
equation (18) represents the angzular motion of the nmodel during
free oscillation., Por the forced oscillation technique wé
can regard the system as starting from rest, i.e.,d, = O

in which case the first term on the Pighk of E§§a§iﬁﬁ {(65)
vanishes. The inverse transform of the second term on the
rignt of equation (65) is as fcllows:

att) = P2 sin(ut-)| +
(- wpihegiuiu 7" wligsncton] (66)

[ o f757) | P Sin (gt - o)

P = Tan 5;‘}2—,‘5}1} (67)

where

T o L il

: A~ wy-w (1-24Y)

(68)
22
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Even in equation (66) we have a transient solution in the
second term which accounts for bringiv; the system from rest

to the steady-state forcing frequéncy. This transient would be
superimposed upon the transient represented by equation (17)
if &l is not zero. Since we are interestéd in the steady-state
conditions, only the first term on the right of equation (66)
will be retained, This term may be rewritten in a slightly
different, but more useful, form as,

-_— - P 2 e s s s
o (L) - /~w'!‘ T Smw;,t-\l)\
- (Sni))#lf(w.\] (69)
= K (5, 4w, S (gt -9
(70)
Resonance oc2urs when the amplitude of the sine function of
equation (69) attains a maximum value. In the absence of
damping reésonance occurs when
wi _ ;
o (71)

and in the presénce of damping resonance occurs when

__ww_‘si - W (72)

Resonance is often said to occur when the forcing frequency, wp,
equals the undamped natural frequency,w,, This statement 1s true
only whén the system has no damping, although it may be an
acceptable approximavion for low levels of damping.

The above expression is easily derived by taklng the derigative
of the amplitude in equation (69) with respect to (wp/wp)e,
equating this derivative to zero and solving to obtain equation

(72). Inserting (72) into (69) gives the amplitude at
resonance as

?/wy,
K(ﬁiw”\”n = E’;(‘_;t)‘lz = KR

(73)

23
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Also at resonance, the phase angle, ¥ (eq. (70)) becomes,

o= 5 in ('—M")h (74)

The angle,y, is known as the phase angle and it may be seen
from equation (69) that the angular displacement lags the

applied moment by the angle ¢¥. The applied moment from
equation (4) is:

M &)= M Sin bt (75)
and the angular displacément follows from equation (69) as,

(Y = K (5,25 Sin (ut-Y) (76)

The relative position of the moment and angular displacement
functions, M(t) ande((t); respectively, are given in Figure 5.

Q1nce we are con51aering a lightly damped system (damping

90 degrees. However, the damping ratid, though small, is
influential at resonance both in thé angular displacement amplitude
(vizs, eq. (73)) and in setting the phasé angle exactly.

Clearly equation (74) may be rewritten as,

Sin

(77

Since the actual phase angle will be slightly less than n/2,
we may introduce a small positive quantity, €, as

Y=1p-€ (78)

Equation (77) becomes

{l
s"“l (“Iz_ -E) = Cosze = ‘- /= f" (79)

or

SME =

‘;zi't Y2
(-3°)
or solving the above expression for the damping ratio, z, we get

; - Sing
E + S’m"él‘"‘ (80)

* 2l

-
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Clearly, equation (79) alléws the following approximation for
small values of damping ratio,

E = }’ (81)

Thus in ordér to measure the damping ratio (and hence the
damping-in-pitch derivative from equation (15)) it is clear
that tne phase angle, {, or the term, €, must be measured
accurately. Equation (69) together with the first and second
derivative may be written as,

< =K Siﬁ’(%i-‘ﬂ) (82)
a2 = We K Cos (wet-W)

=47° (83)
= -wg K Sin (uyt -¥)

(84)

Inserting the above expression into equation (62) where
appropriate gives,

-Twp 5 Cos (Ugt-¥) Sin gt ). - i Wi K Scosmt-v)d*-

- M..N;,K Ssm(ﬂ!;t"')Cos(\\l.;{-")Jh MKwg  (85)
S Sinw tCostwt-V)dt

Clearly the first and third terms on the left are zero so we
are left with,

- Md wi K Scos (wgt - '{0)&‘\'. MW W SSm Wt cosw ¢
Cosodt 4+ MKID‘ g Sim Wk Singpdt

The first term on the right is easily shown to be zero so
equation (86) becomes,

-, wiK T = MKy Siny T

(86)

or —~

M .
My = g Sn¥ (87)

26
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It was pointed out in the case of free oscillatior.. (equations
(30) and (31)) that structural damping must be removad. Thus,
equation (87) becomes,

M"zﬂ;‘“ﬁ;‘

or
_ (M _ M Sin¥e (88)
Ma= - (S Se¥ - )

The above expression is considered to be the basic data-reduction
equaticn for measuring the damping-in-pitch derivative using

the forced oscillation technique. This equation appears as
equation (6) in reference 6§, as ecuation (42) in reference 2

and as equation (25) in reference 9.%3% Along the lines of

cquation (56), equation (88) might be written in coefficient
form as

¢ = -2V _[msiny _ M, Sin?,
M9 gsda | wg K Ko 89)

It should be pointed out that for a finite amount of damping
resonance is reached somewhat before wg/wy equals unity (see

equation (72)) and at resonance the phase angle is less than
90 degrees (see equation (74)), From equations {72) and (74)
we have for effects of the order ;2:

' 3
Wi o = 1~ § (90)

SinYp= 1-Y2 1;2 (91)

BMackapetris, L. J., "A Forced Oscillation System for

Measuring Damping Derivatives at Subsonic and Transonic Speeds,"
Naval Ship Research and Development Center Report 2627,
November 1967

9Wiley, H. G., "A Method for Accurately Measuring Dynamic
Stability Derivatives in Transonic and Supersonic Wind
Tunnels," Presented to AGARD Specialists Meeting, Aircraft
Stability and Control (Available from NA3A, Langley Research
Center), April 1961
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Quite obviously for lightly damped systems (Z about 0.1 or less)

there is negligible error in oscillating the model at the undamped
natural frequency.

Actually, the undamped natural frequency, wp, is a somewhat i
artificial quantity in that it is not directly measureable . i
damped natural fregquency, wg, and the damping ratio, ¢, ‘
which is expressible in terms of the log-decrement, 6
(equations (22)=-(29)). From equation (17):

wy = W, (1- {1)"" (92)

From equation (72), the ratic of the forecing frequency, wr, to
the undamped natural freguency, wp, under conditions of resonance

is \Y¥3
’ l”_t.\ =(-27 *
Wa R ( .{ ) (93)
which gives, ws | - (-Z {2t
E;\R (1r-$2)" (94)

where the relationship with the phase angle follows from equation
(74). Thus, at resonance the ratio of the driving frequency,
Wes to the damped natural frequency, wys is equal to sian.

vinlle the primary goal of the small amplitude forced oscillation
technigue is to obtain the darping~-in-pitch derivative, ’

it 1s possible to alsc obtzin the local tangent to the static
pitching moment, i.e., Cq‘. From equation (69) we have,

we = Plwy
K(EE.1) [0-(z o ;,(‘_:ﬂ;]n (95) 7‘

and from equatifon (70)

k3
- &)

Cos'\’l = [(‘-

(96)

RGO |

28
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Thus equation ($5) may be rewritten as,

Cos _
K(&.4)-= ?1(‘-'42 =) (97

Now from equation (48)

K(&,9)- P\osv = PCos¥
Wa Ao w) - Wy _wf (98)
T T
or —
Mo _ N x _ PCosw
I K
In a vacuum the structural camping contributions are alone present,
-~ _  _ MaCoc \
Mz o Kos Yo _T wz;_. (160)
°

Using equation (100) in equation (99), the static moment
derivative due to aerodynamic effects is

- [M Cos¥ M Cos ";‘- T (g™ “’f:',\ (101)
K K

The assumption has been made that the mechanical damping is
proportional to the oscillatory recuency. Vacuum conditions are
designated by the subscript "o." Eguation (101) may be

rewritten in coefficient from as

C o 2 at
Cu\: -Q‘sd 2( M‘:S‘P - MQK:&.,’) - Lo '%)} (102)

Eguations (101) and (102) are the data-reduction eguations for
the determination of the static moment from the small amplitude
forced oscillation technigue. Equations (101) and (102) appear
as equation (24) in reference 8, as equation {43) in reference 2,

and equation (26) in reference 9.

Further simplifications are possible in equations (101) and
(102). If the drive frequency is identical in both the wind-on
and wind-off conditions then tne second term in equations (101)

and (102) vanishes to give,

(: = - { ‘§|VvCe§ﬂp ﬁﬂe.Ckﬂslﬂg
K Ke

(103)

29
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In driving at resonance the phase angle, ¢ = wR’ is such that

A 104
L'- ’t)‘h.
a result that follows readily from equation (74). Clearly

equation (104) shows that for the lightly damped -ystem cosVR
will be very small and approximately equal to the damping ratio.

Another concept worth noting is the "Q" or quality factor of
the system. The Q of the system is defined as the ratic of the
auDlith e under dynamic ccnditions to the amplitude under static

conditions, i.e.,
| |

Q= 7

(105)

The static deflec tic“,.‘ , may be obtained from equation (19)

by setting« =a = 0 to cbiain,

;zs = P/w:- (106)

43

3 ot :D ]
M0
)

0
@
:

ct

earance of freguency,wy, in the evaluation of a static
ignt be misleading. In eguation (16} it is shown that
.§ampeﬂ natural freguency, w,, is determined by the static

e

derivative, ¥,. From ecunticﬁs (76) and (95) we get for Q,
= 14wl : YA ALY
- = (107)
A= o T fO- @S T R

For oscillations 4t resconance we may find 2., using equation (72) as

xm-
350
ti3 ot

&
H

%= HET * 3
n 3‘;0-?) T a (108)
or using eguation (23 ~ __“.:..

QR o 6 (109)

Eguation (107) indicates that for a lightly damped system it
is necessary to oscillate almost exactly at resonance to see any
anc_-fic tion of the rctatic response. Eguations (108) and (109)
show that when resonance is closely appﬁaﬁched there will be a
sudden iacrease in the amplitude of the model. Equation (70)

points out that for a lightly damped system, the phase angle will

E 4
ic
at

(V)
o

L

b
vt

it i

it

it bl

1N




"l

NSWC/WOL/TR 75-84

be zero until very close to resonance at which point 1t will
be near to n/2 (although as equations (78) and (81) indicate a
more precise value would be n/2 - ). The consequence of making
dynamic measurements on a high Q system is that there might be
some difficulty in practice in reasuring the term Msiny
accurately.

X

FREE OSCILLATION DATA REDUCTION PROCEDURE

As an introduction to the data reduction technique a discussion
of the principle of least squares (Ref. 4) and the lMethod of
Differential Corrections (Ref. 5) is in order.

The principle of least sguares in simple terms states that
the curve which best represents a set of data points is the one
for which the sum of the squares of the residuals has a minimum
value. The term "residuzl" as referred to in the previous
sentence implies a difference between, for a g£iven obscissa, a
data ordinate and the curve ordinate (see Figure 6).

If a function y = f(x,a,b,. . .) is to be fitted to a set
of data points (X3, Y3), the major problem involves finding values
of the constant terms a, b,. . . which will generate the function
which will best represent the given data. Application of the
least squzares principle requires determixin* the values of
a,b,. . . Wwhich will make the sum of the resiﬁaals squared,
dEv? s D& a minimum. This may be accomplished by developing
the set of simultaneously solvable egquations,

(110)

In the function to be fit f(x,a,b,. . . ) is linear in a,b,. . .,
then the residual eguation (110) will also be linear and the
system may be solvec with 1little difficulty. In the functions

31
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which must pe used to represent the wind tunnel nmotions

presently bein
arguments of e
reqairement th

‘} £y

g considered, the parameters a,b,. . . are
xponentials, si nes, and cosines. Under this
residual eguations become non-linear and

1y solved. The Hetnod of Differential

1feh will be discussed next, provides an iterative
on to any degree of accurszcey.

Given a set of H data points (X3,Y3) and a function of
v3i=f(x3,a,b,c) which is to be fitted to the data.
Tne residuals are given by,
V; = $(%;,,%,¢) - Ti (111)
Let the parameters g, b, ané ¢ ke defined as fcllouws,
G=0,4+400
b=bH a
o+lb (112)
C=C,+t0C
where 2, by, and ¢4 are fir§t apgrexiﬁatisﬁs of a, b, and c.
The provlem is_not to determine the corrections 4z, Ab, and
&c so that Ivs< is a minimum,

(113)

=<
o+
<
N
~
A
',s
-]
&
VP
g
2
o
'S
+
4
)
-~/

Expanding by Tayloer's theorem,
{4V =4 (X1,00,be,C) + B (PFha,) +

&b (35:/5b.) + ACLHAE) 4 (Mgher Ordtr Eeeme) 110

3 i°%5*%s% 0
-3 - -~ - 2 = P . = ~ * »
If the first approximaticons are reasonably good, the A's
- 3 - o . = - - . ~ Y
will be small and the haligher corder terms may be dropped.
T . E e =3 & - - - - - - P - 22 v
et us define znother residual zz the dif ence between
* 4 & ~ £ ¥ - -1 3 = ¥R
the ordinates of the first approxiaation curve and the
- . .
data points,
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are the magnitude and orientation of a vector arm
If a section of data late in a flight or wind tunnel

s
to zZero time in accordance with the current vzlues of 2 and
t is therefore incident that the time array should be
3

b

ized so that zero time is located within the section of
eing fitted

Wind tunnel datz are aiways at least slightly non-linear;
is, A z2nd w change somewhat with time. The values of
w obtained by fitting a linear model to such data are
ues related to the mean or middle time of the section of
being fitted. Since K and ¢ are related to zZero time, the

array should be normalized so that zero time is at th
le of the section of data being fitted; ai? param *ﬁters will
e obtained related to the same instant of tinm

by
(ST S SOV« )

] CII. W

O.

o} ﬂ
ﬁl

mezan

h

et Bl oo £ o« oo ot

o N V)
M

[
o
s b

paraneters to be determined by {itting the model to the
e X, 2, w, ¢, and K3. Reasondb‘" good fi

hese quantities are necessary to start the differential
corrections prccedure. The final results do not depend upon the
zecuracy of these anproxidaticns~ the only reguirement is

they be good enough to result in z convergent Térﬁilbﬁ. e
first approximaticns are 11188{“&-Eu in Pigure 7

iae

may be determined as the mean of the tus
.im amplitude.

W Aaa

-1}
be determined from, w = {n-1} 5 |

y >
rexe points ané t, is the time interval between the first and
st of the extreme points,

¢ may be determined as ¢ = wta, where ¢,
between the normalized time zero (middle poin

1t of section of data

veing fitted) and the preceding positive meximum. & poor first
spproximaticn may result in a peBa*%ve value for K; the absolute
vzlue will be correct, however.

£ is deternined as the distance from the Ky line to the
intercept at normallized time zerc of the enveldpe of positive
maxizuz polints.

A=0 will usually provide z reascnable first guess for
the A tern,

The maximum allowable error in the approximation of w depends
upon the résulting maximum phase difference tetween the model and
the data. For a given error in w, the phase difference is
proportional to the number of cycles lncluded in the section of
data being fitted; therefore, greater accuracy is reguired when
fitting a long section of data.

[#a

[WH]

fitted in terms of real time, K and ¢ will be extrapolated

-;rs‘ approxinations

where n is the number of

bt oL,

i
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now be expressed as,

B =24 . e*icos (w4 )

.o. L]
T
¢
L

:‘3'_ = - K® sin (Wei 4+ 9)

oodi L.y
B = kD

Ri = o - [Kicog (whi+¢d+Ks )

The normal equation matrix differs from equation (120) only
in the addition of two rows and columns for the additional
derivatives D and E. The summations of equation (120) are
for i=1 to N where N is the number of data points to be fitted.

m
|

Following is a listing of a FORTRAN IV subroutine which has
been used to fit the data of the current discussion,

The acrivatives required to form the residual equations can

(122) :
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FROCRAM CARUANP (JAPUT «CLTPUT»TOPELS I FUTSTAFEEC=CUIPLToTAPE €y

I1TABEL o TAFEP«TLAFEYY)
QIMENSICN COCAUGCel) ol wUN(SC) o TINE (riilir) anlzfad)
FEAR(SelN) Kkl
R ARRURNMNF O)SEALIS )Y (LY L (] )ol=fenrist)
FURMAT (F4] )
C_ALL FOIT(CCeZ000enO0 M ar sl 5ol +i51)
N S0 (2=1.3
FREAL(Sell) TrFGeTEKD
FORFAT(2F12,.6)
HEAD (LY IWINDONSs1SACILEANAUF VS o UFHEZoeuttl SZenbelin
IF(UFRMSLCTL,E000) STCHI
READ (L) ((CO(L oK) oek=] ot B) ol =19 JFMvS)
JERNS=JF RMS=]
LCi=0
1en=1
BC 82 L=leJbFsS
IF(LeENL]) TINE(L)=0,0
IFtLefTel) TIMELL)ISHIPE(L=~]1)+o0l4
TFOLTIFE(L) ol ToT=ER) sl na(TInF(L)atTelrnis)) CGL TL v&
LCHh=LCNe]
IF(LCREGL)) TINME(L.CAN)=UGU
IFILCNCTal) TINME(LCMISTIME(LIN=)1)2aC04
COLCr1)I=CO(L])
CANTIAUE
JEENMS=L CN
CALL VALUE(NFUNGUFRWSeTINVE oL Ot elIv eCATeftFCealrhi})
JFRVS=a00
CALL FIT(ARUNGUFHMSeTINE eCl el LhoateCnl)
CONTINCE
STOF
tHe

39
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LIMhACICA CO(FOCHQ])O’IFE(h(PO' ~0AX((H)ol!bx(t‘)oP"lN((b)ol"lh(e‘
1) sA(2643)

LvIn=]
LVvAX=])
XVIN=0.0
XvAX=(0,.0
DN 10 = eJF R4S
JF(CC(Jel) alLToCCt=191)) ALLASAVBAS] 8
IF(XVAXECelat)) PVAX(LNEX)=CO(d=1e])
IF(XvAY ,ECol1a0l) TMAX(LMAX)=T]NME(C=1)
IF(XMAX EC.1.0) LMAX= I NAXe]
IF(LVAX.ECL,12) GO TO 1S
IF(JeF0,2) LMvaX=]
IF(XVNAXECele0) ANMIN=O,0
IF(CC(Js1) GTaCCUL=10]1)) XNMIix=AMIN®]l,0
IF(XNMINLEGCo]e0) FPMINILVINI=CG(U=10e])
= JFAANINGEC o) TMINWMLWINISTIFE (C=1)
. IF(XNINGEC1e0) LMIN=LVINS]
IF(JeEaz) LMINZ]
IFUXMIN,FR L) a01) ANAXZ=GO,C
10 CONTINCF
158 IF(InCetCal) vRITE(EReRY) e h
€O FCRVAT(IFlallixe4hatUN o J3ellXetreINe UHF/Z/)
IFC(INeEGCe?P) WRITE(Fo&») MELN
CR FORMATIIF]910YelhblN oJ2elO02eTmIbhe UNZ/)
vhITE(641C1) THECGSTEN
WLITE(CeICOB) (EMAR(T)eT=10l)
WHITE(AR«IGL)(TMAX(])el=]0e%)
sEITE(E«1CO)(EMIN(I) 0eI=109)
REITF (610 (TMIN(T) @l=19G)
100 FOCRMAT(JO0F10L])
101 FCrMATLLIOF]10,2)
CAT=Tvax(])
A(Sel)=(FVAX(1)+PrMIN(]) /246
Alasl)=1.571
FREG=(TvAX( 9)=TNMox(]1)) /8,0
BA(3e1)=€C.Z2RIIP/FREN
A(2el)=FNBX(]1)=B(S0s])
ANUNZENMAX (] ) =MAX(Y)
DENMS(TVAY ( C)=TraX(]1))5 (FrBX(S)=B(%el))
Allel)=2nLY/TF NN
wRITE(AeSC) LCGUNC(A(Tel)el=10e%) eI
&0 FCRMAT(1S«AF10.2)
HETURN
ENC

]llilll“‘lil ‘\Il |l|| it [l

DTl ||m|-»lli|\!| i
i

e A R
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A A A A A ,,I“Wll N
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TR,

SUBKCUTINE FIT(AHUNGJFaNSeTINE sCCoLCho29CAT)
DIMENSICN N(S) oX(Go4000) oA (Z26e3) e CCal0U1)»TINE(4000)
EXTERNAL VF
ANFAR=&
N(l)=nFAk
N(2)=JFRME
N(3)=2
N(a) =]
N(5)=0
DO 10 I=1+NPAR
10 A(]+3)=1
DC 20 L=l.JFRMS
X(1oL)=TINE(L)=CNT
X(2+L)=CCHLLs 1Y)
70 CONTINUE
DFLT=1.0E~4A :
DC 777 NFASS=1450 :
IF(NFASSEr.17) RETUPN :
CollL LSOCSULE(NeXeBAeVFoitFLTY)
IF(A(PFR 1) oGT,04) GO 1C €2 E
whITE (64€0) (0(Iel1)9I=1eNFAR) 0B {2Ce1)eA(2t0C)enlc6te3) H
0 FCHMATI RF1GeT/75€14,77) :
IF(A‘I.I,.LT.G.G) RE‘L’“'\
777 CONTINUE
€7 WRITE(EE0) (B8 (Tal)el=lohFAR)9A(2Cel) e (2092)sA(2¢a3)y
1(8(1e2)eI=1eNFAFR)
MN(2)=VINO(LCR4C00)
JERNMS=MING(LCA«400D)
DC 11 I=1eNPAR
11 A(l+3)=1
DO 2) L=leJFRME
X(1eL)=TINMFIL)=CHT
X(2+L)=CC(L1)
€1 CCNTINUE -
DC 778 AFASS=1450
IF(NFASS,EN.12) RETURN
CALL LSCSUR(AeXoAeVFIRELT)
IF(A(PE91).GT.04) GO TC 63
wrITE(E060) (A(Tel)ol=lolAR) sA(260]1) oA (2692) vA(2003)
IFCA(Lel) el TalaG) RETURHA
778 CONTTIMNUE
€3 BITE(RSEC) (B (Tel)el=1eNFAKR)eA(ZLe)) e (2€ec) 0B (2€e3)
1(a(1e2)9I=]eNFAR)
£S5 DC 25 K=loJFENS
CO!K01)=EXP(°I(101)’(1INE(K)-CN!))'A(?ol)'Slh(I(391)'(llHF(KQ'CNT)
1¢2(&0])))+A(5)

S R

b1
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s R fH

75 CCNTINUE
SUM1=0,0
wh1TE(&o200)
200 FCRMAT(//®  HUN Tine

Z 1 LIFFe®)

: 00 30 K=1eJFFRmS
CIFF=SCO(Kel)=X(Zon)
SUM]I=SUNML+D]IFFE82

30 CCNTIANUE
DEV=SCRT(SUML/ZJUFKVS)
wWRITE(65101) CEV

= 10] FCRMAT(EL4.T)

= D0 31 K=1eJFRMSHZ20

TIFE=-CAIL InPUY

T A st b el o A o

= ) DIFF=CO(Ke1)=X(Z oK)

= = TIM=TIME (K)=CNT

= . WhITE(69100) NiLNeTINE(K) o TIMeX(ZoK) 9CU(Ke1) 9DIFF
i 2 100 FORMAT(ISe2F1Ze303F14.7)

L : 31 CCNIVINUE

= RETURN

= END

é END

AP ey ﬂullxilllilllﬂ];ﬂl"""" T
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SUBROUTINE VF (NeXoDF oA)
DIMENSTION DF (i) eX(1)eA(1)en(])
C FEQLATION TO FITesee FoEXP(=A(1)®X)I®A(Z)PSIN(A(ZISAGA(4))+A(S)

ecccsssssces X = TINME-SFItT CCHSTaTY ssesssese
SA3=SIN(A(I)ex(1)+A(4})
EAI=EXP(=A(]1)ex(]1))
DUM =EAl&A(2)eS5p3

OF (2)=EA]*SL3

DF (1) ==X(1)eDLM
SUM  =A(2)*EAL®COS(A(3)%X(]1)+A(4))

CF(3)=x(1)*Su¥
CF (&) =SL¥

DF (5) =1,
X(9)=0Ures (S)
RETURN

END
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THE SMALL-AMPLITUDE FREE-OSCILLATION SYSTEM
The Surersonic Tunnel Association standard ten degree cone was
selected as the test configuration. The rodel has interchangable
nose sections which resulted in bluntnesses of .0167, .1, and .25
hen moted with the conical afterbody which had a 4.5 inch diameter
Several ballast rings are lcocated in the model near its base
ure proper static balancing. The forward end c¢f the cone was
th a W1ng holder which attached the cone to the llexyure mount
supporting sting. The cone, noses, flexure ring hcider, and
bazlast ring are shown in Figure 8.

[

-
t
o

3
»

[SUI o BRLALTIN o S & M- X
by b O (00
(94
2 I - s Y
w1 oab e Ut
f -

174}
O ot
Yot
@ .

>asic components of the sting support and model system zare
ed in ?‘"ure G, The sting is ce51gned to permit the

ment of seven commerically avallable torsional flexure mounts
ow for a variety of torsional stiffness and load carrying
narac%eﬁistics, which may be required to meet a specific test
objective. For the present test 5/8 inch cross flexures of spring
constants of K=106.0 and 13.3 inch-lbs/radian were selected.
Using flexures of differing spring constants allows evzluzticon

of frequency effects,

(3 ct ) e
O et b
ct b
o
bt €3N 0]
l—»’ et Ly

The model-sting systenm is injected intc the flow field at the
desired sting angle-of-attack. Secondary oscillation of the
support "vstem initlally appeareé to be a prcblem. To alleviate
this problem the angle-o--abtack serve mechanism is clamped to the
wind tunnel superstructure, An initial angle-of-attack and the
subsecuent resulting small oscillations about the stirg angle-of-
attac«x is acnlieved by a pneumatically actuated piston, rod, and tripping
lever system. Application of air pressure to the rear of the
piston drives the pistern and rod forward causing the tripring
lever to rotate outward and contact the model. The model is caused
to rotate about the flexural pivot pcint, with the maximur deflection
cnaie being dependent or the height of the lever hammer he
As the piston moves further forward, the level is quickly released

wnieh allows the model to freely osciilate about the p‘"ct tﬁint.
Application of alr pressure on the other side of the ris

retracts the actuating rod and sets the system for cuOuhE;
riggering seguence. Severzl trips may be achieved during each

wind tunnel run, zllowing several dampirng records tc be obtzined.

A datz record is also obtained prior to and just after a wind
tunnel run to allow determination of tare damping values under
near vacuum ccnditlons.

In order teo sense znd continuously read out the instantaneous
model attitude, the cross members of the flexure inAt are instrunmented
with a dual, heat conpensating, strain gage system. uch a system
provides 2 back-up gage in the event of a failure of uhé main
system., 7The straln gage flexure system was thoroughly investigated
tc ensure that there was no increased structurazl damping or thermal
sensitivity associzted with the installation of the strain
gages on the flexural members, In the present application, the
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nterrupted reccrd of the model anale-v‘~attack histo f
oximately 10 to 20 seconds duraticn 1s cbtzined frcm a single
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eful for typical mcdel oscillation
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FORCE CSCILLATION SYSTEM

The forced-oscillation technique is based on the principle
that when a sinple mechanlcal system is externally forced to
cscillate near its undamped natural frequency,¥* the input force
(or moment) required to maintain the motion is just that necessary
to overcome the inherent damping in the system (Ref. 2). Hence
a measurenent of the forecing function is equivalent to a measure-
ment of the system damping. In theory, the oscillation need not
be exazctly at the resonant frequency, as a measurement of the
forcing function and phase difference between the input force
{or moment) and the system response is sufficient to provide a
means for deducing the damping. However, in practice, the

technigue becomes less useful as the oscillation frequency

departs from the system natural frequency, and most forced-
oscillation damping measurement systems operate at or near

resonant conditions.

The forced-oscillation mechanism used is illustrated in
mplified from in Figure 12. The model 1s attached to the pivoting
, which is forced to perform a single-degree-of-freedom
liation about the pivot point by a yoke and eccentric crank
ched to a rot ating shaft driven by a one-third horsepower

The balance, designed and built at the NASA Langley Research

er for a hypersonic free-jet wind tunnel, employs the 90-degree

ve shaft turn in order to minimize undesirable tunnel blockage
heating effects which would result from a motor

housing mount located on the sting axis. Oscillation fregquencies

from gbout one to 50 hertz can be obtained and oscillation ampli-

< up to two degrees can be generated by the currently

table components. Operation of the balance is restricted to

m aining the plane of 050111at10n coincident with a vertical

o ’ d1bh0u&h the balance may be pitched either up or down to

& rimum angle cf 30 degrees and may be yawed to angles restricted

ehly by loazd limitations on the balance head. Hence, in-plane

camping is achieved by pitching the balance in the oscillation

r , and out-sf-plane damping is obtained by yawing the

b ce normal to the oscillatinn plane.

¥Resonance occurs from equation (72) when

We = WeJ1-27 = wa (1-47)

and
AN S
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NSWC/WOL/TR T75~84

Loads transmitted to the model are deduced from strain-gage
measurements on the upper and lower beams shown in Figure 13,
which schemutically illustrates the forward balance arrangement.

This moment beam desipgn was selected to provide maximum strain
(i.e., gzge response) with minimum deflection so that the model
is rigidly forced to perform the motion generated by the shaft
crank and yoke. The degree to which this is achieved is related
to the racio of oscillation frequency to the mechanical natural
freguency of the moment beam and mass located forward of the
beam. liote will be made of this point when balance calibration
and data reduction are discussed. It is also important to note
that the moment beam is located between the pivot and the model,
and therefore loads measured by the gages located thereon 4o not
contain drive-train or pivot frictional components.

The instantaneous angular displacement of the model relative
to the sting is obtained from strain gages mounted on the center
deflection beam mounted between the model and the sting, as
illustrated in Figure 13. The stiffness of this beam and the
inertia of the r'zfde1 and pivoting head combine to generate a
natural oscillation frequency of the balance and model. This
frequency is changed by the additlon of zerodynamic sti’fﬁess
during wind-tunnel flow conditions, but typically the deflection
beam stiffness 1is greater than the aerodynamic stiffness, as
operatinn at as high a value of reduced frequency as possible is
usually desirable. This mazimun freguency is limiteé by the
minimum model moment of inertia which can be practicazlly obtained
and by the maximum frequency allowable by both the data-
acguisition system and by the dynamic chara-teristics of the
balarce itself. 4 foil strain-gage bridge is mounted on the
defelcticn beam, whereas semiconductor strain guges are mounted
on the moment beams to provide increased sensitivity.

In order to obtain satisfactory perfcrmance under high-
temperature hypersonic tunnel flow conditions, the balance is
provided with water cooling. lowever, water cooling passages are
not provided within the strain-gage b@a ms due to size limitations,
and these elements can be subjected to some temperature draft
during testing. The bridges are temperature compensated and, in
addition, since osecillation signals are the primary Measurement
shjective, a sliow bridge-zero drift due to uneven thermazl loading
can be eliminated by monitoring only thc a.c. component of the
bridre outputs. This technique does not account for bridre
sensiti;itj changes due %o uni form temperature changes; however,
account can be taken of the latter by calibration and by appropriate
design technique.

It is aiso desirzble that the pitchinr-moment referencze
point be located at the oscillation pivot point. As shown in
Figure 12, however, the pitching-moment beam is located some
distance forward of the pivot point. Additional strain-gage
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NSWC/WOL/TR 75-84

bridges are provided on the beam elements to develop a normal-

i force signal, which 1s subsequently combined with the pitching
moment, anazlogous to a simple moment-transfer equation, to yield
an output moment signal referenced about the pivot point. This
signal combination is accomplished on the balance itself.

Calibration of the balance and associated read-out instru-
mentation requires consideration of both static and dynamic
effects. Static calibration was accomplished in a conventional
nanner by dead-weight loading with d.c. bridge excitation voltages

s 5, and 7 volts. Actual operation of the balance
formed with a bridge voltage of avproximately U4 volts.

It is important to note that the pitching-momznt beam
eflections under actual oscillating conditions represent dynamic
flections and, as such, reguire smaller loads for equal strains
nan urder equivalenL static conditions. That is, the instan-
aneous beam deflection is a function of applied load and freguency,

principle az dynamic czlibration at several oscillation
ncies is required. In practice, one normally assumes that
iechaniczl natural frequency of the moment beam and model

t a combination is very much higher than the cscillation
uency during testing, and hence the dynamic deflections can
cted to be approximately equal to static deflections under
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ion of the relative dynamic amplification has been u
rlier tests performed on the balance for NASA. A
test setup ?o” that study is shown in Vigure 1&
d
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ude c¢f two polinds was maintained while the frequency
om 1 to 150 hertz. The balance strain-gage
puts were recorded and analyzed to provide the frequency
haracteristics of the balance-fizture SjSt&ﬂ. The
m each bridge was normalized to the one hert
alu
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5 shows a representative frequency response curve
hing-moment bridge output as a function of load
. £ resonant frequency of about U5 hertz can be observed
e dynamic response amplification being about 10 at this
guency. I!ote that at a frequency of aosut 10 hertz, the ocut-
is approximately 10 percent higher than the static value.
refore, during actual testing at this frequency, one would H
uce the output measu..ement about 10 percent in order to obtain
cne actual load magnitude from static calibration information.
- This result is, of course, depcendent on the fixture inertia
characteristics being representative of the actual model
characteristics.
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‘he basic data-reduction analysis for forced-oscillation

vstems has been described and is not repeated here. In principle,
neasuremnents are made of the applied moment amplitude, My
the angular displacement amplitude,ef 5, the phase angle, ¥,
between the moment and displacement signals, and the frequency of
oscillation, w, then the total system damping, C, can be computed
from the relation (equation (89))

C= Mo SinY

fb !

“t hde U3
|-.J ta »‘

2
w g (123)
“hen is approximately equal to the undamped natural frequency of
the sycten, the phase difference ¢ becomes apprcximately 90 degrees.
4t this frequency, the applied moment necessary to sustain the
motion is near z minimum value. The required moment is
actually a minimum at the damped natural frequency, which is slightly
less than the undamped natural requency; however, the difference
between the twc is negligible for lightly damped systems. Wind-
of f tare mezasurements were made under near-vacuum conditions
prior to ezch run to assess the structural damping influence.
These measurenents weére obtained at the wind-off resonant fre-
quency, which was typrically only one or two hertz less than the
wind-on value, due to the large deflec 1 spring stiffness
ralgtive to the zerodynamic stiffness.

THE WIND TUNNEL TESTS

Tests were conducted in the wind tunnel facilities of the Havail
Zurface ¥eapons Cencer.

The Hyperveliocity Research Tunnel (8A) operates (iach 1£) at
temperatures up to 24060 Kelvin in the supply pressure range from
250 to 700 ztmespheres. The tunnel utilizes hlb.-vressure siored
nitrogen as the working gas. The gas is heated by a forced-
2onvection, electrical resistance-type graphite heater, Under
maximum cperating conditions, this heater delivers power to the gas
=zt a rate of 1£00 kilowattis.

The facility provides 2 maximum Reynolds number of
2 % 10° per meter, which represents altitude simulaifon at
36,000 meters. The average sSteady-state operating time at
any supply condition is approximately three minutes.

The facility is supplied with a test model support
mechanism that provides pltch and roll motions and readouts.
1so, instrumentation and data processing equipment is
available for force, pressure, temperature, and dynamic
stability testing.
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Nozzle flow studies; namely, Pitot pressure surveys, have
been made at supply pressures of 400 and 600 atmospheres.
Results of these studies indicate that the uniform flow test
ore is 13 to 20 centimeters in diameter. 'The centerline
i

Pitot variation over a 7l-centimeter axial length is approximately
3 percent. This corresponds to a Mach number gradient 4di/dX of

about 0.5 x 10~ ?/centimeter.

Yor further information regarding the Mach 18 lypervelocity
rch Tunnel, see HOLTR TH-158, Ref. 10.!'°

The model was injected into the Mach 18 flow field at sting
ie-of-attack of 0°, 5° and 10°, disturbed to an initiai angle-of-
k¥ and permitted to freely oscillate. The subsequent induced

ld
in gage signals were ctored on magnetic tape and converted to
tal values.

ares-differential correction technijue was then
he stabiliity parameters from the oscillatory

1)

The stability ccefficients determined were Cmag, the damping
mement coefficlient, Co, the restoring moment coefficient, and
Ce the slepe of the restoring moment coefficient with angle-of-
attach.

The damping moment coefficient was determined as:

e - s = 3 . » 3 ~
The pitehing moment was determined as:

-~
bowd
13
o
Lo

The slope of the pitching moment coefficient was

determined as:
-—I—— T T f}:}")
(:aﬂ d w* — W, Ve
4 )

Issﬁrnett, R. #. Zeel, A. G., "HOL Mach 18 livperveloccity
Research Tunnel,"” ilaval Ordnance Laboratory Technical Report
7E-158, hugust 1974
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orsional stiffness provided much better performance in that very

all trim angles developed. It is concluded that preliminary

timates of pitching moment should be made prior to flexure

selection and that these values should then be used tc determine the
im angle and therefore the flexure which is most compatible

th the test requirements.

1] Sﬂ ot

o frequency effect was found to be present. The system uas
£ to produce highly repeatable data yi=lding a maximum

deviation of 3 percent for pitching moment coefficient and
2 percer

The techniques previously described were used to fit
zercha 11isvic theory to the 1-D oscillation obtained from
ind tunnel tests.

th

e

ne

The free-oscillation data was digitized and it each record
ting of approximately 6000 data points. The average percent
of fit of the theory to the data indicated that the damped
idal eguation, Equation (121), represented the recorded
unnel motions to within an accuracy of 2.5 percent. &
entative plot of the 1-D wind tunnel motion is presented

-ure 15,
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accurate and precise force and moment cat 13 caken
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In order to further evaluate the free-cscillation system
mparison of #Mach 18 free oscillation results were made with
free oscillation results obtained in the Aerospace Research
Laboratory HMach 14 Facility.!™ Results typical of this comparison

re given in Flgures 20-25. The slope of the pitching moment

1 CM‘ and the dynamic stability coefficient Cmae

The trends ez?ib ted in the Mach 1! tests are
Fach 12 results. The shifts noted between the
1% results are due to Mach number and

gravity location effects. The effects of blunt-
and €m9q are presented in Figures 26 and 27,

i center of gravity location referred to the
normalized by the virtual length for the free

ts had a value of 0.6078.
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FORCE OSCILLATIOH TEST RESULT

’e

3

’

d out at ¥ach 5 in the ¥WOL Supersonic Tunnel
srsonic Tunnel (Tunnel #2) at a variety of
20
u

-
-

(D e

(o B
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cY‘TDOWHC‘ 3@

nditions. The model used was a l0-degree
ntness of seven percent. The analog output
in-gage bridges were digitally sampled and
n of time, with the sampling rate being

1y 90 vo*",s per cycle were obtained. On-
the pitching-moment and angular displacement
n a dual-trace coscilloscone provided the
k information for confirming resocnant conditions.
ed control proved to be satisfactory for these
difference between signals changed dramatically
nereased through the desired resonant condition,
£ ab resorance was gquite ae?zni
ed signals indicated tha
~drees of the 30-derree res
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The more comprehensive testing was acccmplished in the Super-
sonic Tunnel, with data being cbtained at pitch angles of G, &, and
11 degrees; yaw adgles of 0 and 7 derrees; and at total pressures
of 3¢, 80, 150, 150, and 200 psia. After operation of the balance

1]

Yyaichner, 0., Sawyer, F. ¥%., "In-Plane and Out of Plane
Stability Derivatives of Slender Cones at iach 14" ferospace
Research Laboratories Report 73-00%0, July 19773
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system was confirmed in the Supersonic
o conducted in the liypersonic Tunnel at
al pressure of 370 psia to validate the
systenm pe"formance. Some of the results of
e presented in Figures 28-31 and compared with

fOT s

h Tunnel by the small-
ue for the 7 percent blunt case
ata appear to be in reasonable
should be noted that several
to acvount for center-of-
these corrections
:GP the discussion here.

n Figure 30 as a

with some Hach 2

2 data were obtained
or: balance

sent ¥ach 5 datz
fle-of=-attack

e. A&n out-of-plane
E of seven degrees
r with the ¥ach 2

. However, the jsut-of=-
inite increase i

Tunnel,

25 shows the measured damping coefficients as a function
number and compares these results with some ballistic

¢ ¥ach 5.7 to 7.5 (Ref. 11) and with some free-

wind-tunnel data obtained at Mach 6.!'° There

e :ittle Heynolds “Lmber influence on the data

The lowest Reynolds number at which the present data

is “en"esentnt*vn of the minimnum value at which the

culd be pccurutc1g measured at a bridge excitation

and with ze present instrumentztion setup.
lower ?0 can be achieved by increasing the

s is 11mitec by the reguirement for mirimizing

res andé by voltage linitation of the gages

signal gain and filtering

tion and recording equipment.

]
*3
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damping at an angle of attack near the cone half angle, but
i rather they indicate some decrease in damping for this
configuration as angle of attack approaches 30 degrees or so.

Finally, a data point was obtained at zero mean angle of
attack in the %L Hypersonic Tunnel for the 7 percent blunt case.
The results obtained were in agreement with the data obtained in
the Supersonic Tunnel. The balance support system in the Hypersonic
Tunnel dces not permit out-of-plune damping data to be obtained
with this particular balance; however, in-plane damping may be
obtazined at angles of attack up to 30 degrees, a limit imposed by
the necessity for maintaining an adequate oil both for the motor
gearing in *he drive-unit hcusing of the balance, discussed
earlier. The allowable load limits imposed by the mechanical
design of the balance were not reached in any of the tests
reported here, and therefore the balance possesses the capability
for use at higher loads (i.e., higher total pressures) than
indicated by these evaluation tests.

RANGE WIND-TUNHEL PITCH DAMPING DISCREPANCIES

Reference 1 reports an increase in dynamic stability as

s increased. As a result of this range conducted

, 1t was concluded that the measurements made sug ggest
ing derivatives at higher Kach numbers may have

,.ce on the type of motion pattern experienced by the
>yiously seen, in comparing the data of Reference 1
wind funnel data, the wind tunnel determined

a decrezse in dynamic stability with Mach number,
agreement with the results of the range study.
variation can be seen to nontribute as was

3 Peference 1 also concludes that the reporte
e due to model support interference. during
gation, no conclusive evidence of this type of
be determined. The high repeatzbility of the

i
that the dan
some depernd

model. is

with comhar
values indi
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!io Reynold
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It was concluded that yaw damping at angle-of-attack must be
different from pitch damping if the pitch moment is a nonlinear
function of angle-of-attack. It has been shown that slightly
blunted cones have highly nonlinear aerodynamics at small

angles-of-attack, which are only a fraction of the cone halfl
anrle (uefeﬁences 14 and 18)!® and subsequent analysis followed.!

Two-degree-of-freedom tests have also been conducted?? to

restigate the in-plane, out-of-plane defference., It was found
transverse product of inertia has a very strong coupling

in the case of nonplanar motion. In the case of planar

1 1inear aerodynamiecs were experienced. In the case of

anar motion an aerodynamic accleration couollng derivative

uas extracted which had the same effect as an inertial coupling
by-product of inertia.?

3 &t O

Such damping asymmetry tends to invalidate the use of the
cyclin theory to correctly represent the frze flight motion
bludv 4 sphere cones. Out-of-plane damping 1s then present
;n the range test and is not present in the wind tests.

18019*, J. T. and Walchner, 0., "HNose muntness Effects on

Stabiiity Derivatives of Slender Cones," Transactions of the

Technical Workshop on Dynamic Stability Testing, AEDC and
¢c., Vol. 1, Paper 8, 1965

Yurphy, C., "Limit Motions of a Slightly Asymmetric
icle Acted on by Cubic Damping Moments,"™ U. S. Army Ballisitcs
search Lab., Aberdeen Proving Grounds, Haryland, AIAL Paper
270, 1974

, Sawyer, F. M., Walchner, 0., "Stability

research Taborabor es, Wright-Pztterson

3

Walchner, 0., "Research on Hypersonic Stabllit roblems,"
140

n~rospace Research Lab. Report 7i-
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If the range data were fit without allowing for this in-plane, out-
of-plane difference anerror will be introduced which could lead

to the over predlction of total damping. As the Mach number is
increased tne initial angular disturbance of the range model would
increase and thus the resulting oscillations and the over prediction
of total dynamic stability coefficient.

The reported in-plane, out-of-plane damping difference should
be further investigated. A corrected equation of motion should
be determined :nd simulation conducted to determine the overall
effect of such coefficient asymmetry. In the meantime, care
should be taken in comparing results determined from methods
where in-plane, out-of~-plane damping is present and methods
where only ir-plane .amping is present until the source for the
disagreement iz well understood.

g S o s G -

SUMMARY

The damping in pitch characteristics of a ten degree cone
have been investig:ted Numerous single-degree-of-freedom wind
tunnel experiments have been conducted in order to obtain the
variation of damping coefficient with bluntness, Mach number,
Reynolds number and angle-cf-attack. The results of the present
investigation have been compared with results from other g
facilities and have been found to be in good agreement. Data
on the ten degree Supersonic Tunnel Association cone was also
obtained at Mach 18. Damping data on this configuration at
¥%ach 175 was not previously available. A discrepancy was noted
with damping data variation with Mach number as obtained from a
ballistic rangs experiment. An explanation of this discrepancy,
based on in-plane, oui-of-plane damping difference, has been
offered. A detalled =xplanztion of the theory, data reduction
technique and experimental methods has also been presented in
order to document the dynamic {esting capabilities of the Navzal E

Surface Wezpons Center, White Oak Laboratory.
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